An infinite Ramsey theorem and some Banach - space dichotomies
نویسنده
چکیده
A problem of Banach asks whether every infinite-dimensional Banach space which is isomorphic to all its infinite-dimensional subspaces must be isomorphic to a separable Hilbert space. In this paper we prove a result of a Ramsey-theoretic nature which implies an interesting dichotomy for subspaces of Banach spaces. Combined with a result of Komorowski and TomczakJaegermann, this gives a positive answer to Banach’s problem. We then generalize the Ramsey-theoretic result and deduce a further dichotomy for Banach spaces with an unconditional basis.
منابع مشابه
On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations
In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...
متن کاملCoding into Ramsey Sets
In [6] W. T. Gowers formulated and proved a Ramseytype result which lies at the heart of his famous dichotomy for Banach spaces. He defines the notion of weakly Ramsey set of block sequences of an infinite dimensional Banach space and shows that every analytic set of block sequences is weakly Ramsey. We show here that Gowers’ result follows quite directly from the fact that all Gδ sets are weak...
متن کاملPre-compact Families of Finite Sets of Integers and Weakly Null Sequences in Banach Spaces
In this paper we provide a somewhat general framework for studying weakly null sequences in Banach spaces using Ramsey theory of families of finite subsets of N. Recall that the Ramsey theory on families of finite subsets of N was developed in a series of papers of Nash-Williams in the 60’s, a theory that is today naturally embedded in the more familiar infinite-dimensional Ramsey theory. The a...
متن کاملSome generalizations of Darbo's theorem for solving a systems of functional-integral equations via measure of noncompactness
In this paper, using the concept of measure of noncompactness, which is a very useful and powerful tools in nonlinear functional analysis, metric fixed point theory and integral equations, we introduce a new contraction on a Banach space. For this purpose by using of a measure of noncompactness on a finite product space, we obtain some generalizations of Darbo’s fixed-point theorem. Then, with ...
متن کاملSolvability of infinite system of nonlinear singular integral equations in the C(Itimes I, c) space and modified semi-analytic method to find a closed-form of solution
In this article, we discuss about solvability of infinite systems of singular integral equations with two variables in the Banach sequence space $C(I times I, c)$ by applying measure of noncompactness and Meir-Keeler condensing operators. By presenting an example, we have illustrated our results. For validity of the results we introduce a modified semi-analytic method in the case of tw...
متن کامل